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The typicality approach Why typicality?

The typicality scenario

Why typicality?
The traditional view on relaxation / 2nd law of thermodynamcis:

N n 1 _&a 1a 4
QMm: p=le)el = p=Ze w, p=Z8(H-E)
1 _ Hx.p) 1
CM: p(x,p) = d(x—x0)o(p—po) = p=5e kT, p=—5(H(x,p)-E)

problems:

CM: invariance of Von Neuman entropy, ergodicity, mixing, etc.

QM: (framework of open quantum systems) large (stationary, broad band)
environment, adequate weak coupling, pertinent factorizing initial state, etc.

Typicality:

[ary

) 1.
p = |1¥){¥| does not evolve into p = “Er ,p=—=0(H—E)

N

?e

but  (BA(D)]) =~ %Tr{e_ :

T
o
o

for very many (all?) A

Jochen Gemmer The typicality approach to thermodynamical relaxation in quant



The typicality scenario

X

X: microstates in state space, AR: accessicle region due to constants of motion,
f (X): considered quantity

9 Average: Ear(f) = [4r f(X) dVx
@ Variance: VAR(f) = EAR[fz] — EAR[f]2

1
Typicality: Zrlf] < fmax — fmin
= relative frequency of stats featuring f (x) =~ Ear(f) is high

connection to dynamics possible if X =G(X) divs G =0




Basics and non-composite systems

Typicality in QM Composite systems

Typicality in QM

basics and non-composite systems state:

[v) = Z"pn [n) = Z(nn +i&nln))

n n
X ={nn,&n} : Mn,&n : real cartesian coordianates
dynamics: Schrédinger equation, X = H(X) diveH =10
accessible region: M.: projective constants of motion (invariant

subspaces), e.g., spanned by energy eigenstates, spanned by states featuring
equal particle number, etc.

="M, |, [Fl,ﬁa]:o ;o Ne=Tr{l} , Te{fla,Ms} = Nabpa

AR : {<¢|ﬁa|¢> = WL}  occupation probabilities of subspaces conserved
considered quantity : (%) = (|Ay)
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Basics and non-composite systems
Composite systems

Typicality in QM

Hilbertspace average of observables:
N . . W, -
Ear[f] = [(V|A[)] ap = THAQ} , Q=) —==fl,

Boltzmann state featuring “equal a priori probabilities

Hilbertspace variance of observables: (Aas = MN,AMNR)
O WaWs s g Tr{Aoa}’
Var[f] = A3 ((A Z NN+ 5] (Tr{AusAl g} = d0s )
consider, e.g.: (AZ(A): spectral variance)
1

Wifal) =1 = A3((A) = 5 83(A)

typicality: requires high dimensional space, bounded spectra
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Basics and non-composite systems
Composite systems

Typicality in QM

typicality of states: (squared) distance of most states within the AR to some
“typical state” is small. €: canditate for a typical state

mean squared distance: A%(p) = [Tr{(p - Q) Har
for non-composite systems
AL(P)=1-Tr{N}~1 =

for Boltzmann-type {’s not small at all.

Conclusion on non-composite systems:
Many observables may relax, but the state does not. There is no increase of
Von Neumann entropy.

composite systems: H=Hs+ He+V
projective subspaces: R
Sys.: |_|A EA——5A<E<EA+ =0a, env.: HB:EB—%(;BSESEB-i-%(SB

definition of global projective subspaces: [1, = l1allp
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Basics and non-composite systems
Composite systems

Typicality in QM

Microcanonial Scenario: [Hs,H] =0
accessible region AR : {(|flaly)) = Wa, (|fgly) = We)}

energies in system/environment seprately conserved, no energy in coupling.

Candidate for the typical local system state:

Q= Z —I'IA local Boltzmann state

. ~ W3 w3
mean squared distance: A% (p) = Z —B <1 — —A>
A
scaling of upper bound with subsystem sizes:
NaoxNa  No—xNo = AF()— a5 ()

For large environemnts there is full typicality of state, increase of entropy, etc.
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Basics and non-composite systems
Composite systems

Typicality in QM

energy exchange scenario
total energy subspaces: fle = Mafls
accessible region AR : {(4|Mg|) = We}

only total energy is conserved, no energy in the coupling

Candidate for the typical local system state:
Q= TI'E,,V{Z I'IE}

scaling of upper bound with subsystem sizes:
1
Na — x Na Ng — x Np = A?f(ﬁ) - ;Afj(ﬁ)

For large environemnts there is full typicality of state, increase of entropy, etc.
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Basics and non-composite systems
Composite systems

Typicality in QM

Canonical Scenario:
What about the standard canonical Gibbs state?

A state density in the environment yielding N oc e can be expected for
environments made of weakly interacting subsystems.

In this case one finds fort the typical energy exchange state:

1

~ 1
= Q= 267CEAHA ~

__H
?e kT | CR —
Comment on relaxation in composite systems:

All relaxation in composite systems, regardeless of the strength of the
interaction, is due to increasing correlations/entanglement.
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Dynamical or off-equilibrium typicality

Dynamical or off-equilibrium typicality

consider more general AR:
AR:  {(WAl) =A, (Yl)=1}
A: any hermitian Observable.
How differently will the various (1|AJ¢)) from the AR erolve?
AL (WIA@)W)) = [WIAWD) )] ar — [GIA®) )R

Hard to answer. But consider:

o= (1+ g2gmA) 0. TAI=0  THF}—g

with c2 = 1 and 2 approximately independent of N
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Dynamical or off-equilibrium typicality

accessible region for the |0)’s: AR: {(00) =1} =
[(816)]ap = L AH(919)) o
L(6IAI) e = 20, AhlloA) o 1

N large: almost all |¢) are from the AR with A = 24!

result for the dynamics of the |¢)’s:

VAL (91A(1)]9)) _ 1
2d =~ VN
[SIA®)I0)]ar = Tr{ANE)},  A(0) =1+2dA
For large N almost all (¢|A(t)|¢) evolve very similar!
The average evolution of all {(1)|A(t)|¢) may possibly be computed with

projection methods = The inhomogeneity in the NZ-equation may almost
always be neglected.
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Dynamical or off-equilibrium typicality

“generic evolutions™: N = 1000

“standard” weak coupling

Exponentieller Zerfall, Nges=1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

“pathological” weak coupling

Kein Zerfall, Nges=1000
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strong coupling

Nicht-Exponentieller Zerfall, Nges=1000

0.1

The “take home message™
According to the typicality approach
relaxation is not a necessity, but something

that is extrem likely to happen in complex
systems.

more information, publications: ask me or
visit our webpage.

Many thanks to M. Michel, C. Bartsch, ....
and the audiencel!
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