The typicality approach to thermodynamical relaxation in quantum systems.

Jochen Gemmer

Universität Osnabrück

Topical School on Open Quantum Systems, Nancy, 2008

Contents

- The typicality approach
 - Why typicality?
 - The typicality scenario
- Typicality in QM
 - Basics and non-composite systems
 - Composite systems
- 3 Dynamical or off-equilibrium typicality

Why typicality?

The traditional view on relaxation / 2nd law of thermodynamcis:

QM:
$$\hat{\rho} = |\psi\rangle\langle\psi| \quad \Rightarrow \quad \hat{\rho} = \frac{1}{Z} e^{-\frac{\hat{H}}{kT}}, \ \hat{\rho} = \frac{1}{Z} \hat{\delta}(\hat{H} - E)$$

CM:
$$\rho(x,p) = \delta(x-x_0)\delta(p-p_0) \Rightarrow \rho = \frac{1}{Z}e^{-\frac{H(x,p)}{kT}}, \ \rho = \frac{1}{Z}\delta(H(x,p)-E)$$

problems:

CM: invariance of Von Neuman entropy, ergodicity, mixing, etc.

QM: (framework of open quantum systems) large (stationary, broad band) environment, adequate weak coupling, pertinent factorizing initial state, etc.

Typicality:

$$\rho = |\psi\rangle\langle\psi| \quad \text{does not evolve into} \quad \hat{\rho} = \frac{1}{Z} e^{-\frac{\hat{H}}{kT}} \,, \, \hat{\rho} = \frac{1}{Z} \hat{\delta}(\hat{H} - E)$$

but
$$\langle \psi | \hat{A}(t) | \psi \rangle \Rightarrow \approx \frac{1}{7} \text{Tr} \{ e^{-\frac{\hat{H}}{kT}} \hat{A} \}$$

for very many (all?) \hat{A}

The typicality scenario

 \overline{x} : microstates in state space, AR: accessicle region due to constants of motion, $f(\overline{x})$: considered quantity

• Average:
$$E_{AR}(f) = \int_{AR} f(\overline{x}) dV_{\overline{x}}$$

• Variance:
$$V_{AR}(f) = E_{AR}[f^2] - E_{AR}[f]^2$$

Typicality:
$$V_{AR}^{rac{1}{2}}[f] \leq f_{ ext{max}} - f_{ ext{min}}$$

 \Rightarrow relative frequency of stats featuring $f\left(\overline{x}
ight)pprox E_{AR}(f)$ is high

connection to dynamics possible if
$$\dot{\overline{x}} = \overline{G}(\overline{x})$$
 $div_{\overline{x}} \overline{G} = 0$

invariance of state space volume, no ergodicity, mixing, etc.

Typicality in QM

basics and non-composite systems state:

$$|\psi\rangle = \sum_{n} \psi_{n} |n\rangle = \sum_{n} (\eta_{n} + i \, \xi_{n} |n\rangle)$$
 $\overline{\mathbf{x}} = \{\eta_{n}, \xi_{n}\} : \eta_{n}, \xi_{n} : \text{real cartesian coordinates}$

dynamics: Schrödinger equation, $\dot{\overline{x}} = \overline{H}(\overline{x})$ $div_{\overline{x}} \overline{H} = 0$

accessible region: $\hat{\Pi}_{\alpha}$: projective constants of motion (invariant subspaces), e.g., spanned by energy eigenstates, spanned by states featuring equal particle number, etc.

$$\hat{\Pi}_{\alpha}^2 = \hat{\Pi}_{\alpha} \quad , \quad \left[\hat{H}, \hat{\Pi}_{\alpha}\right] = 0 \quad , \quad N_{\alpha} = \mathrm{Tr}\{\hat{\Pi}_{\alpha}\} \quad , \quad \mathrm{Tr}\{\hat{\Pi}_{\alpha}, \hat{\Pi}_{\beta}\} = N_{\alpha}\delta_{\beta\alpha}$$

AR: $\{\langle\psi|\hat{\Pi}_{\alpha}|\psi\rangle=W_{\alpha}\}$ occupation probabilities of subspaces conserved considered quantity: $f(\overline{x})=\langle\psi|\hat{A}|\psi\rangle$

Hilbertspace average of observables:

$$E_{AR}[f] \equiv [\![\langle \psi | \hat{A} | \psi \rangle]\!]_{AR} = \text{Tr}\{\hat{A}\hat{\Omega}\} \quad , \quad \hat{\Omega} = \sum_{\alpha} \frac{W_{\alpha}}{N_{\alpha}} \hat{\Pi}_{\alpha}$$

Boltzmann state featuring "equal a priori probabilities

Hilbertspace variance of observables: $(\hat{A}_{\alpha\beta} \equiv \hat{\Pi}_{\alpha}\hat{A}\hat{\Pi}_{\beta})$

$$V_{AR}[f] \equiv \Delta_H^2(\langle \hat{A} \rangle) = \sum_{\alpha\beta} \frac{W_\alpha W_\beta}{N_\alpha (N_\beta + \delta_{\alpha\beta})} \Big(\text{Tr} \{ \hat{A}_{\alpha\beta} \hat{A}_{\alpha\beta}^\dagger \} - \delta_{\alpha\beta} \frac{\text{Tr} \{ \hat{A}_{\alpha\alpha} \}^2}{N_\alpha} \Big)$$

consider, e.g.: $(\Delta_S^2(\hat{A}): \text{spectral variance})$

$$\langle \psi | \hat{\Pi}_{lpha} | \psi
angle = 1 \quad \Rightarrow \quad \Delta_{H}^{2}(\langle \hat{A}
angle) = rac{1}{N_{lpha} + 1} \Delta_{S}^{2}(\hat{A})$$

typicality: requires high dimensional space, bounded spectra

typicality of states: (squared) distance of most states within the AR to some "typical state" is small. $\hat{\Omega}$: canditate for a typical state

mean squared distance:
$$\Delta_H^2(\hat{\rho}) = [Tr\{(\hat{\rho} - \hat{\Omega})^2\}]_{AR}$$

for non-composite systems

$$\Delta_{H}^{2}(\hat{
ho})=1-\mathsf{Tr}\{\hat{\Omega^{2}}\}pprox1\quad\Rightarrow\quad$$

for Boltzmann-type $\hat{\Omega}$'s not small at all.

Conclusion on non-composite systems:

Many observables may relax, but the state does not. There is no increase of Von Neumann entropy.

composite systems:

$$H = H_S + H_E + V$$

projective subspaces:

$$\mathsf{sys.:} \hat{\Pi}_{\mathcal{A}} : E_{\mathcal{A}} - \tfrac{1}{2}\delta_{\mathcal{A}} \leq E \leq E_{\mathcal{A}} + \tfrac{1}{2}\delta_{\mathcal{A}}, \quad \mathsf{env.:} \ \hat{\Pi}_{\mathcal{B}} : E_{\mathcal{B}} - \tfrac{1}{2}\delta_{\mathcal{B}} \leq E \leq E_{\mathcal{B}} + \tfrac{1}{2}\delta_{\mathcal{B}}$$

definition of global projective subspaces: $\hat{\Pi}_{\alpha} = \hat{\Pi}_{A} \hat{\Pi}_{B}$

Microcanonial Scenario: $[H_s, H] = 0$

accessible region
$$AR: \{\langle \psi | \hat{\Pi}_A | \psi \rangle = W_A, \quad \langle \psi | \hat{\Pi}_B | \psi \rangle = W_B \}$$

energies in system/environment seprately conserved, no energy in coupling.

Candidate for the typical local system state:

$$\Omega \equiv \sum_{A} \frac{W_{A}}{N_{A}} \hat{\Pi}_{A}$$
 local Boltzmann state

 \Rightarrow

mean squared distance:
$$\hat{\Delta}_H^2(\hat{\rho}) = \sum_B \frac{W_B^2}{N_B} \left(1 - \sum_A \frac{W_A^2}{N_A^2} \right)$$

scaling of upper bound with subsystem sizes:

$$N_A \to x N_A$$
 $N_B \to x N_B$ \Rightarrow $\Delta_H^{2+}(\hat{\rho}) \to \frac{1}{y} \Delta_H^{2+}(\hat{\rho})$

For large environemnts there is full typicality of state, increase of entropy, etc.

energy exchange scenario

total energy subspaces:
$$\hat{\Pi}_E = \sum_{E_A + E_B \approx E} \hat{\Pi}_A \hat{\Pi}_B$$

accessible region
$$AR: \{\langle \psi | \hat{\Pi}_E | \psi \rangle = W_E \}$$

only total energy is conserved, no energy in the coupling

Candidate for the typical local system state:

$$\Omega \equiv \mathsf{Tr}_{Env} \{ \sum_{E} \frac{W_{E}}{N_{E}} \hat{\Pi}_{E} \}$$

scaling of upper bound with subsystem sizes:

$$N_A \to x N_A$$
 $N_B \to x N_B$ \Rightarrow $\Delta_H^{2+}(\hat{\rho}) \to \frac{1}{y} \Delta_H^{2+}(\hat{\rho})$

For large environemnts there is full typicality of state, increase of entropy, etc.

Canonical Scenario:

What about the standard canonical Gibbs state?

A state density in the environment yielding $N_B \propto e^{cE}$ can be expected for environments made of weakly interacting subsystems.

In this case one finds fort the typical energy exchange state:

$$\Rightarrow \quad \Omega = \frac{1}{Z} \mathrm{e}^{-\mathit{cE}_{A}} \hat{\Pi}_{A} \approx \frac{1}{Z} \mathrm{e}^{-\frac{\hat{H}}{kT}}, \qquad c \approx \frac{1}{kT}$$

Comment on relaxation in composite systems:

All relaxation in composite systems, regardeless of the strength of the interaction, is due to increasing correlations/entanglement.

Dynamical or off-equilibrium typicality

consider more general AR:

AR:
$$\{\langle \psi | \hat{A} | \psi \rangle = A, \quad \langle \psi | \psi \rangle = 1\}$$

 \hat{A} : any hermitian Observable.

How differently will the various $\langle \psi | \hat{A} | \psi \rangle$ from the AR erolve?

$$\Delta_{H}^{2}\left(\langle\psi|\hat{A}(t)|\psi\rangle\right) = \left[\!\left\langle\psi|\hat{A}(t)|\psi\rangle^{2}\right]\!\right]_{AR} - \left[\!\left\langle\psi|\hat{A}(t)|\psi\rangle\right]\!\right]_{AR}^{2}$$

Hard to answer. But consider:

$$|\phi
angle = \left(\hat{1} + rac{d}{(1+d^2)}\hat{A}
ight)| heta
angle\,, \qquad {\sf Tr}\{\hat{A}\} = 0, \qquad {\sf Tr}\{\hat{A}^j\} = c_j$$

with $c_2=1$ and $\frac{c_j}{N}$ approximately independent of N

accessible region for the
$$|\theta\rangle$$
's:

$$AR: \{\langle \theta | \theta \rangle = 1\} \Rightarrow$$

$$[\![\langle \phi | \phi \rangle]\!]_{\mathit{AR}} = 1,$$

$$\Delta_H^2(\langle \phi | \phi \rangle) \propto \frac{1}{N}$$

$$[\![\langle\phi|\hat{A}|\phi\rangle]\!]_{AR}=2d,$$

$$rac{\Delta_H^2(\langle \phi | \hat{A} | \phi
angle)}{d^2} \propto rac{1}{N}$$

N large: almost all $|\phi
angle$ are from the AR with A=2d!

result for the dynamics of the $|\phi \rangle$'s:

$$\frac{\sqrt{\Delta_H^2(\langle\phi|\hat{A}(t)|\phi\rangle)}}{2d} \leq \frac{1}{\sqrt{N}}$$

$$[\![\langle\phi|\hat{A}(t)|\phi\rangle]\!]_{AR} = \text{Tr}\{\hat{A}\hat{\rho}(t)\}, \qquad \hat{\rho}(0) = \hat{1} + 2d\hat{A}$$

For large N almost all $\langle \psi | \hat{A}(t) | \psi \rangle$ evolve very similar! The average evolution of all $\langle \psi | \hat{A}(t) | \psi \rangle$ may possibly be computed with projection methods \Rightarrow The inhomogeneity in the NZ-equation may almost always be neglected.

"generic evolutions":

N = 1000

"standard" weak coupling

"pathological" weak coupling

strong coupling

The "take home message":

According to the typicality approach relaxation is not a necessity, but something that is extrem likely to happen in complex systems.

more information, publications: ask me or visit our webpage.

Many thanks to M. Michel, C. Bartsch, and the audience!